Optimization of the Worldwide Supply Chain at Continental Tires: A Case Study

Scott J. Mason, PhD mason@clemson.edu
Fluor Endowed Chair in Supply Chain Optimization and Logistics
Professor of Industrial Engineering
Business Background

• Continental tires
 – Worldwide manufacturing and distribution of tires
 – Both Original Equipment Manufacturing (OEM) as well as Replacement tires segments

• Continental tires by the numbers

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yearly Revenue</td>
<td>10 billion Euros</td>
</tr>
<tr>
<td>Employees worldwide</td>
<td>40000</td>
</tr>
<tr>
<td>Production plants</td>
<td>18</td>
</tr>
<tr>
<td>Product variation</td>
<td>10000</td>
</tr>
<tr>
<td>Production stages per tire</td>
<td>100</td>
</tr>
</tbody>
</table>
Production Strategies

• Make-to-stock
 – Safety stock
 – Seasonal sale forecasts

• Multiple production locations for same products
 – Some raw materials: Long lead times and less number of suppliers
 – Full truck-load transportation
 – Custom-made manufacturing tools

Scott J. Mason (mason@clemson.edu)
Marketing Strategy

• OEM and replacement tire markets
 – Also serves small dealers and garages
• Diverse product portfolio
 – High-volume, low-margin products
 – Low-volume, high-margin products
• Seasonal sales in some markets
• Need to increase presence in emerging markets
Planning Strategies at Continental Tires

- **Long-term planning (1 to 3 years out)**
 - Decides allocation of products to global production locations
 - Capacity planning for each plant level
 - Transportation of products from manufacturing location to customer regions

- **Mid-term planning (12 to 18 months out)**
 - Defines production requirement for weekly range

- **Short-term scheduling and planning (weekly/daily)**
 - Execution of mid-term planning strategies
Challenges of Complex Planning Process

• Long-term planning
 – Performed worldwide
 – Impacts billions of Euros (€) in terms of revenue and costs

• Objectives

<table>
<thead>
<tr>
<th>Goals</th>
<th>Example Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase sales</td>
<td>Optimal assignment of production to demand</td>
</tr>
<tr>
<td>Reduce costs</td>
<td>Selection of production location</td>
</tr>
<tr>
<td>Balance trade-offs</td>
<td>Supply versus demand</td>
</tr>
</tbody>
</table>
Business Problems

• Lack of distributed and collaborative planning
• Higher customer demand volatility
• Time consuming, labor-intensive planning processes
• Inconsistent data across businesses
 – Forecasting issues
• Various type of toolsets with different capacities across production locations
 – Placement of toolsets among production locations based on production strategies
• Creating business scenarios for simulation is highly complex
Constraints to Consider

• Limited resources
• Worldwide supply networks
• Multiple production locations
• Multiple products
• Production complexity
• Capacity limitation
• Multiple planning models
• Various shifts for employees
• Implemented Future Allocation and Capacity Tracking (FACT) planning solution
 – Creates planning data repository which can be imported to ERP systems and other data warehouses
 – Assigns production numbers to products and resources
 – Provides data for multiple planning horizons
 – Assigns production quantities to worldwide production locations
 – Constraints include plant capacity, availability of machines and variability of product characteristics
Scope of FACT Application

Decision Horizon

- **Years**
- **Quarters**
- **Months**
- **Weeks**
- **Days**
- **Hours**

Supply Chain Design - Physical asset strategy, outsourcing, distribution flow, customer assignment, service level, logistics strategy, and financial goals.

Sales and Operations Planning - Develop optimal deployment and reconciling financial targets with demand, capacity, and materials. Assign production to facility and mid-term sourcing strategies. Coordination among multiple business units and functions, finding globally optimal plan.

Inventory Optimization - Optimization of inventory targets and service levels across all levels of the organization.

Line Balancing - Determine best allocation of tasks to people and equipment; optimize Takt Time.

Order Slotting

Assign orders and forecast to production. Determine best time and assets to utilize in fulfilling demand. Consume Forecast.

Production Scheduling

Develop detailed manufacturing, sourcing, and distribution plans, taking into account inventory, orders, resources, shelf life, setups, etc.

Maintenance Scheduling

Determine best schedules based on object status, parts availability, people skills and schedules, workflow, and workplace constraints.

Solution Architecture

• FACT application is built on IBM Decision Optimization Center
 – CPLEX Optimization Studio solves the mathematical model
 – Scenario Repository has multiple “what-if” scenario for the planners to consider
 – Client is the graphical user interface (GUI) for the end user
Decision Making

- Two levels of planning:
 - Allocation planning and capacity planning

- Allocation planning at worldwide level
 - Yearly production quantities at all production locations
 - Need to consider plant capacity, critical machine availability, production complexity at each plants
 - Considers Bill-Of-Capacity (BOC) while allocating resources

- Capacity planning at individual plant level
 - Takes input from Allocation planning results
 - Separate optimization model for each production plants
 - Considers products that are manufactured in respective plants
 - Considers Bill-Of-Materials (BOM) for decision making at each plant level
Characteristics of FACT

• Acts as a planning data repository
• Exchange data between systems like ERP, data warehouses and other legacy systems
• Provide graphical as well as tabular view of results
• Supports team collaboration, i.e. multiple location access and multiple user inputs
 – Easier to configure customized data access to users and location
• Computes resource extensions to solve capacity limits
 – Assigning additional work shifts
 – Buying new machines
• Compares cost due to resource extension vs. benefits from increased sales
Benefits of FACT

- Improved master data quality because of consistent data model
- Consistent information flow from central headquarters to each plant because of the use of one standard tool
- Easier to identify and rectify incorrect data imported from legacy systems
- Simulate multiple business scenarios and hence provide better planning granularity
- Identify plant bottlenecks and suggests necessary resource extensions
- Better decision making, higher cost saving and improved customer service